Conferences Conferences
Grants Grants
Contact Personal Information
 
Leszek Gasiński
Books and Monographs
 
4. Gasiński L., Papageorgiou N.S., Exercises in Analysis. Part 2, Problem Books in Mathematics. Springer, Switzerland, 2016. ISBN 978-3-319-27815-5, doi:10.1007/978-3-319-27817-9
3. Gasiński L., Papageorgiou N.S., Exercises in Analysis. Part 1, Problem Books in Mathematics. Springer, Switzerland, 2014. ISBN 978-3-319-06175-7, doi:10.1007/978-3-319-06176-4
2. Gasiński L., Papageorgiou N.S., Nonlinear Analysis, Series in Mathematical Analysis and Applications, vol 9. Chapman & Hall/CRC, Boca Raton, FL, 2006.
1. Gasiński L., Papageorgiou N.S., Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems, Series in Mathematical Analysis and Applications, vol 8. Chapman & Hall/CRC, Boca Raton, FL, 2005.
 
Publications
 
144. Bai Y., Gasiński L., Winkert P., Zeng S., W^1,p versus C^1: The nonsmooth case involving critical growth, Bulletin of Mathematical Sciences, 10:1 (2020) 2050009, doi:10.1142/S1664360720500095.
143. Gasiński L., Papageorgiou N.S., Krech I., Nonlinear nonhomogeneous Robin problems with gradient dependent reaction, Nonlinear Analysis: Real World Applications, 55 (2020), 103135, doi:10.1016/j.nonrwa.2020.103135.
142. Gasiński L., Winkert P., Existence and uniqueness results for double phase problems with convection term, Journal of Differential Equations, 268:8 (2020), 4183-4193, doi:10.1016/j.jde.2019.10.022.
141. Gasiński L., Winkert P., Constant sign solutions for double phase problems with superlinear nonlinearity, Nonlinear Analysis: Theory, Methods & Applications, 195 (2020) 111739, doi:10.1016/j.na.2019.111739.
140. Gasiński L., Papageorgiou N.S., Winowski K., Positive solutions for nonlinear Robin problems with concave terms, Journal of Convex Analysis, 26:4 (2019), 1145-1174.
139. Bai Y., Gasiński L., Papageorgiou N.S., Positive solutions for nonlinear singular superlinear elliptic equations, Positivity, 23:4 (2019), 761-778, doi:10.1007/s11117-018-0636-8.
138. Candito P., Gasiński L., Livrea R., Three solutions for parametric problems with nonhomogeneous (a,2)-type differential operators and reaction terms sublinear at zero, Journal of Mathematical Analysis and Applications, 480:1 (2019), 123398, doi:10.1016/j.jmaa.2019.123398.
137. Candito P., Gasiński L., Papageorgiou N.S., Nonlinear nonhomogeneous Robin problems with convection, Annales Academiae Scientiarum Fennicae, 44 (2019), 755-767, doi:10.5186/aasfm.2019.4438.
136. Gasiński L., Santos Junior J.R., Multiplicity of positive solutions for an equation with degenerate nonlocal diffusion, Computers and Mathematics with Applications, 78 (2019), 136-143, doi:10.1016/j.camwa.2019.02.029.
135. Gasiński L., Papageorgiou N.S., Multivalued periodic Lienard systems, Journal of Mathematical Analysis and Applications, 477 (2019), 196-221, doi:10.1016/j.jmaa.2019.04.028.
134. Bay Y., Gasiński L., Papageorgiou N.S., Nonlinear Dirichlet problems with the combined effects of singular and convection terms, Electronic Journal of Differential Equations, 2019 (2019), No. 57, pp. 1-13.
133. Gasiński L., Papageorgiou N.S., Convergence theorems for adapted sequences of random sets, Stochastic Analysis and Applications, 37:2 (2019), 189-218, doi:10.1080/07362994.2018.1548971.
132. Gasiński L., Papageorgiou N.S., Multiple solutions for (p,2)-equations with resonance and concave terms, Results in Mathematics, (2019) 74:79, pp. 34, doi:10.1007/s00025-019-0996-9.
131. Gasiński L., Papageorgiou N.S., On a nonlinear parametric Robin problem with a locally defined reaction, Nonlinear Analysis: Theory, Methods & Applications, 185 (2019) 374-387, doi:10.1016/j.na.2019.03.019.
130. Gasiński L., Papageorgiou N.S., Nonlinear Dirichlet problems with sign changing drift coefficient, Applied Mathematics Letters, 90 (2019), 209-214, doi:10.1016/j.aml.2018.11.009.
129. Peng Z., Gasiński L., Migórski S., Ochal A., A class of evolution variational inequalities with nonconvex constraints, Optimization, 68:10 (2019), 1881-1895, doi: 10.1080/02331934.2018.1476861.
128. Gasiński L., Papageorgiou N.S., Nonlinear multivalued periodic systems, Journal of Dynamical and Control Systems, 25:2 (2019), 219-243, doi: 10.1007/s10883-018-9408-9.
127. Gasiński L., Papageorgiou N.S., Positive solutions for the Robin p-Laplacian problem with competing nonlinearities, Advances in Calculus of Variations, 12:1 (2019), 31-56, doi:10.1515/acv-2016-0039.
126. Gasiński L., Papageorgiou N.S., Integral representation of random set-valued measures, Stochastic Analysis and Applications, 36:5 (2018), 883-894, doi:10.1080/07362994.2018.1486204.
125. Gasiński L., Papageorgiou N.S., Superlinear Robin problems with indefinite linear part, Science, Technology and Innovation, 2:1 (2018), 74-94.
124. Gasiński L., Papageorgiou N.S., Nodal solutions for nonlinear nonhomogeneous Robin problems with an indefinite potential, Proceedings of the Edinburgh Mathematical Society, 61 (2018), 943-959, doi:10.1017/S0013091518000044.
123. Barboteu, M., Gasiński, L., Kalita, P,, Analysis of a dynamic frictional contact problem for hyperviscoelastic material with non-convex energy density, Mathematics and Mechanics of Solids, 23:3 (2018), 359-391, doi:10.1177/1081286517718604.
122. Bartosz, K., Gasiński, L., Liu, Z.. Szafraniec, P., Convergence of a time discretization for a nonlinear second-order inclusion, Proceedings of the Edinburgh Mathematical Society, 61 (2018), 93-120, doi:10.1017/S0013091516000560.
121. Gasiński L., Papageorgiou N.S., Resonant Robin problems with indefinite and unbounded potential, Mathematische Nachrichten, 291:5-6 (2018), 848-878, doi:10.1002/mana.201600174.
120. Gasiński L., Papageorgiou N.S., Anti-periodic solutions for nonlinear evolution inclusions, Journal of Evolution Equations, 18:2 (2018), 1025-1047, doi:10.1007/s00028-018-0431-9.
119. Gasiński L., Papageorgiou N.S., Periodic solutions for nonlinear nonmonotone evolution inclusions, Discrete and Continuous Dynamical Systems Series B, 23:1 (2018), 219-238, doi:10.3934/dcdsb.2018015.
118. Bai Y., Gasiński L., Papageorgiou N.S., Nonlinear nonhomogeneous Robin problems with dependence on the gradient, Boundary Value Problems, 2018:17, 24 pages, doi:10.1186/s13661-018-0936-8.
117. Gasiński L., Migórski S., Ochal A., Peng Z., Optimal control for doubly nonlinear evolutionary inclusions, Applied Mathematics and Computation, 321 (2018), 244-254, doi:10.1016/j.amc.2017.10.041.
116. Gasiński L., Papageorgiou N.S., Pairs of nontrivial solutions for resonant Robin problems with indefinite linear part, Dynamic Systems and Applications, 26 (2017) 309-326.
115. Gasiński L., Papageorgiou N.S., Multiplicity theorems for (p,2)-equations, Journal of Nonlinear and Convex Analysis, 18:7 (2017), 1297-1323.
114. Gasiński L., Papageorgiou N.S., Positive solutions for the Neumann p-Laplacian with superdiffusive reaction, Bulletin of the Malaysian Mathematical Sciences Society, 40 (2017), 1711-1731, doi:10.1007/s40840-015-0212-3.
113. Gasiński L., Papageorgiou N.S., Asymmetric (p,2)-equations with double resonance, Calculus of Variations and Partial Differential Equations, 56:3 (2017), Article 88, 1-23, doi: 10.1007/s00526-017-1180-2.
112. Gasiński L., Papageorgiou N.S., Positive solutions for nonlinear elliptic problems with dependence on the gradient, Journal of Differential Equations, 263 (2017), 1451-1476, doi: 10.1016/j.jde.2017.03.021.
111. Gasiński L., Klimczak L., Papageorgiou N.S., Nonlinear Dirichlet problems with no growth restriction on the reaction, Zeitschrift fur Analysis und ihre Anwendungen (Journal of Analysis and its Applications), 36:2 (2017), 209-238, doi: 10.4171/ZAA/1586.
110. Gasiński L., Papageorgiou N.S., Positive, extremal and nodal solutions for nonlinear parametric problems, Journal of Convex Analysis, 24:1 (2017), 261-285.
109. Gasiński L., Kalita P., On quasi-static contact problem with generalized Coulomb friction, normal compliance and damage, European Journal of Applied Mathematics, 27:4 (2016) 625-646, doi: 10.1017/S0956792515000583.
108. Gasiński L., Papageorgiou N.S., Nonlinear elliptic equations with a jumping reaction, Journal of Mathematical Analysis and Applications, 443:2 (2016) 1033-1070, doi: 10.1016/j.jmaa.2016.05.053.
107. Gasiński L., Klimczak, L., Papageorgiou N.S., Nonlinear noncoercive Neumann problems, Communications on Pure and Applied Analysis, 15:4 (2016), 1107-1123, doi: 10.3934/cpaa.2016.15.1107.
106. Gasiński L., Papageorgiou N.S., Positive solutions for the generalized nonlinear logistic equations, Canadian Mathematical Bulletin, 59:1 (2016), 73-86, doi: 10.4153/CMB-2015-064-8.
105. Gasiński L., Ochal A., Shillor M., Quasistatic thermoviscoelastic problem with normal compliance, multivalued friction and wear diffusion, Nonlinear Analysis: Real World Applications, 27 (2016) 183-202, doi: 10.1016/j.nonrwa.2015.07.006.
104. Gasiński L., Ochal A., Modeling of quasistatic thermoviscoelastic frictional problem with normal compliance and damage effect, Journal of Coupled Systems and Multiscale Dynamics, 3:3 (2015) 253–261, doi: 10.1166/jcsmd.2015.1084.
103. Gasiński L., Papageorgiou N.S., Nonlinear, nonhomogeneous periodic problems with no growth control on the reaction, Journal of Dynamical and Control Systems, 21:3 (2015), 423-441, doi: 10.1007/s10883-014-9245-4.
102. Gasiński L., Papageorgiou N.S., Parametric p-Laplacian equations with superlinear reaction, Dynamic Systems and Applications, 24 (2015), 523-558.
101. Gasiński L., O'Regan D., Papageorgiou N.S., Positive solutions for nonlinear nonhomogeneous Robin problems, Zeitschrift für Analysis und ihre Anwendungen (Journal for Analysis and its Applications), 34:4 (2015), 435-458, doi:10.4171/ZAA/1548.
100. Gasiński L., Migórski S., Ochal A., Existence results for evolutionary inclusions and variational-hemivariational inequalities, Applicable Analysis, 94:8 (2015), 1670-1694, doi:10.1080/00036811.2014.940920.
99. Gasiński L., Ochal A., Shillor M., Variational-hemivariational approach to a quasistatic viscoelastic problem with normal compliance, friction and material damage, Zeitschrift für Analysis und ihre Anwendungen (Journal for Analysis and its Applications), 34:3 (2015), 251-275, doi:10.4171/ZAA/1538.
98. Gasiński L., Papageorgiou N.S., Extremal, nodal and stable solutions for nonlinear elliptic equations, Advanced Nonlinear Studies, 15 (2015), 629-665.
97. Gasiński L., Papageorgiou N.S., Bifurcation Phenomena for Parametric Nonlinear Elliptic Hemivariational Inequalities, in: Advances in Variational and Hemivariational Inequalities, Chapter 1, Weimin Han, Stanislaw Migorski, Mircea Sofonea (eds.), Springer, 2015, 3-38, doi:10.1007/978-3-319-14490-0.
96. Gasiński L., O'Regan D., Papageorgiou N.S., A variational approach to nonlinear logistic equations, Communications in Contemporary Mathematics, 17:3 (2015), 1450021-1-37, doi:10.1142/S0219199714500217.
95. Gasiński L., Papageorgiou N.S., Nodal and multiple solutions for nonlinear elliptic equations involving a reaction with zeros, Dynamics of Partial Differential Equations, 12:1 (2015), 13-42, doi:10.4310/DPDE.2015.v12.n1.a2.
94. Gasiński L., Papageorgiou N.S., Resonant equations with the Neumann p-Laplacian plus an indefinite potential, Journal of Mathematical Analysis and Applications, 422:2 (2015), 1146-1179, doi:10.1016/j.jmaa.2014.09.026.
93. Gasiński L., Liu Z., Migórski S., Ochal A., Peng Z., Hemivariational inequality approach to evolutionary constrained problems on star-shaped sets, Journal of Optimization Theory and Applications, 164:2 (2015), 514-533, doi:10.1007/s10957-014-0587-6.
92. Gasiński L., Ochal A., Dynamic thermoviscoelastic problem with friction and damage, Nonlinear Analysis: Real World Applications, 21:1 (2015), 63-75, doi:10.1016/j.nonrwa.2014.06.004.
91. Gasiński L., Papageorgiou N.S., Multiplicity of solutions for Neumann problems resonant at any eigenvalue, Kyoto Journal of Mathematics, 54:2 (2014), 259-269, doi:10.1215/21562261-2642386.
90. Gasiński L., Papageorgiou N.S., Positive solutions for parametric equidiffusive p-Laplacian equations, Acta Mathematica Scientia, Series B. English Edition, 34:3 (2014), 610-618, doi:10.1016/S0252-9602(14)60033-3.
89. Gasiński L., Papageorgiou N.S., On generalized logistic equations with a non-homogeneous differential operator, Dynamical Systems, 29:2 (2014), 190-207, doi: 10.1080/14689367.2013.870125.
88. Gasiński L., Papageorgiou N.S., Multiple solutions for a class of nonlinear Neumann eigenvalue problems, Communications on Pure and Applied Analysis, 13:4 (2014), 1491-1512, doi:10.3934/cpaa.2014.13.1491.
87. Gasiński L., Papageorgiou N.S., Dirichlet (p,q)-equations at resonance, Discrete and Continuous Dynamical Systems, 34:5 (2014), 2037-2060, doi:10.3934/dcds.2014.34.2037.
86. Gasiński L., Papageorgiou N.S., A pair of positive solutions for (p,q)-equations with combined nonlinearities, Communications on Pure and Applied Analysis, 13:1 (2014), 203-215, doi:10.3934/cpaa.2014.13.203.
85. Gasiński L., Papageorgiou N.S., Multiple solutions for nonlinear Dirichlet problems with concave terms, Mathematica Scandinavica, 113 (2013), 206-247.
84. Gasiński L., Papageorgiou N.S., Nonlinear periodic equations driven by a nonhomogeneous differential operator, Journal of Nonlinear and Convex Analysis, 14:3 (2013), 583-600.
83. Gasiński L., Papageorgiou N.S., Nonlinear Neumann problems with constraints, Funkcialaj Ekvacioj, 56 (2013), 249-270.
82. Gasiński L., Papageorgiou N.S., A pair of positive solutions for the Dirichlet p(z)-Laplacian with concave and convex nonlinearities, Journal of Global Optimization, 56:4 (2013), 1347-1360, doi:10.1007/s10898-011-9841-8.
81. Gasiński L., Papageorgiou N.S., Existence and uniqueness of positive solutions for the Neumann p-Laplacian, Positivity, 17 (2013), 309-332, doi:10.1007/s11117-012-0168-6.
80. Gasiński L., Papageorgiou N.S., Multiplicity of solutions for Neumann problems with an indefinite and unbounded potential, Communications on Pure and Applied Analysis, 12:5 (2013), 1985-1999, doi:10.3934/cpaa.2013.12.1985.
79. Gasiński L., Papageorgiou N.S., Pairs of nontrivial solutions for resonant Neumann problems, Journal of Mathematical Analysis and Applications, 398 (2013), 649-663, doi:10.1016/j.jmaa.2012.09.034.
78. Gasiński L., Papageorgiou N.S., Existence and multiplicity of solutions for noncoercive Neumann problems with p-Laplacian, Schedae Informaticae, 21 (2012), 27-40, doi:10.4467/20838476SI.12.002.0812.
77. Gasiński L., Papageorgiou N.S., Multiplicity of positive solutions for eigenvalue problems of (p,2)-equations, Boundary Value Problems, 2012:152 (2012), 1-17, doi:10.1186/1687-2770-2012-152.
76. Gasiński L., Papageorgiou N.S., Neumann problems resonant at zero and infinity, Annali di Matematica Pura ed Applicata, 191:3 (2012), 395-430, doi: 10.1007/s10231-011-0188-z.
75. Gasiński L., Papageorgiou N.S., Multiple solutions for nonlinear coercive problems with a nonhomogeneous differential operator and a nonsmooth potential, Set-Valued and Variational Analysis, 20:3 (2012), 417-443, doi: 10.1007/s11228-011-0198-4.
74. Gasiński L., Papageorgiou N.S., Positive solutions for nonlinear Neumann eigenvalue problems, Dynamic Systems and Applications, 21 (2012), 235-250.
73. Gasiński L., Papageorgiou N.S., Dirichlet problems with double resonance and an indefinite potential, Nonlinear Analysis: Theory, Methods & Applications, 75:12 (2012), 4560-4595, doi:10.1016/j.na.2011.09.014.
72. Gasiński L., Papageorgiou N.S., Bifurcation-type results for nonlinear parametric elliptic equations, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 142A:3 (2012), 595-623, doi:10.1017/S0308210511000126.
71. Gasiński L., Papageorgiou N.S., Dirichlet problems with an indefinite and unbounded potential and concave-convex nonlinearities, Abstract and Applied Analysis, 2012 (2012), 1-36, Article ID 492025, doi:10.1155/2012/492025.
70. Gasiński L., Papageorgiou N.S., Nonhomogeneous nonlinear Dirichlet problems with a p-superlinear reaction, Abstract and Applied Analysis, 2012 (2012), 1-28, Article ID 918271, doi:10.1155/2012/918271.
69. Gasiński L., Papageorgiou N.S., Nonlinear elliptic equations with singular terms and combined nonlinearities, Annales Henri Poincaré, 13 (2012), 481-512, doi:10.1007/s00023-011-0129-9.
68. Gasiński L., Papageorgiou N.S., Multiple solutions for asymptotically (p -1)-homogeneous p-Laplacian equations, Journal of Functional Analysis, 262 (2012) 2403-2435, doi:10.1016/j.jfa.2011.12.003.
67. Gasiński L., Papageorgiou N.S., Multiple solutions for nonlinear Neumann problems with asymmetric reaction, via Morse theory, Advanced Nonlinear Studies, 11 (2011), 781-808.
66. Gasiński L., Papageorgiou N.S., Anisotropic nonlinear Neumann problems, Calculus of Variations and Partial Differential Equations, 42 (2011), 323-354, doi:10.1007/s00526-011-0390-2.
65. Gasiński L., Papageorgiou N.S., Multiplicity of Solutions for Nonlinear Elliptic Equations with Combined Nonlinearities, in: Handbook of Nonconvex Analysis and Applications, Chapter 4, D. Y. Gao and D. Motreanu (eds.), International Press, Boston, 2010, 183-262.
64. Gasiński L., Papageorgiou N.S., On the existence of five nontrivial solutions for resonant problems with p-Laplacian, Discussiones Mathematicae Differential Inclusions, Control and Optimization, 30:2 (2010), 169-189.
63. Gasiński L., Papageorgiou N.S., Nontrivial solutions for Neumann problems with an indefinite linear part, Applied Mathematics and Computation, 217:6 (2010), 2666-2675, doi:10.1016/j.amc.2010.08.004.
62. Gasiński L., Papageorgiou N.S., Existence of three nontrivial smooth solutions for nonlinear resonant Neumann problems driven by the p-Laplacian, Zeitschrift für Analysis und ihre Anwendungen (Journal for Analysis and its Applications), 29:4 (2010), 413-428, doi:10.4171/ZAA/1415.
61. Gasiński L., Papageorgiou N.S., A multiplicity theorem for double resonant periodic problems, Advanced Nonlinear Studies, 10 (2010), 819-836.
60. Gasiński L., Papageorgiou N.S., Multiple solutions for noncoercive problems with the p-Laplacian, Bulletin of the Belgian Mathematical Society, 17 (2010), 83-99.
59. Denkowski Z., Gasiński L., Papageorgiou N.S., Multiple solutions for nonautonomous second order periodic systems, Acta Mathematica Scientia, Series B. English Edition, 30:1 (2010), 350-358.
58. Gasiński L., Papageorgiou N.S., Solutions and multiple solutions for periodic p-Laplacian systems with a nonsmooth potential, Applicable Analysis, 89:2 (2010), 207-219, doi:10.1080/00036810802713909.
57. Gasiński L., Papageorgiou N.S., Nontrivial solutions for a class of resonant p-Laplacian Neumann problems, Nonlinear Analysis: Theory, Methods & Applications, 71:12 (2009), 6365-6372, doi:10.1016/j.na.2009.06.039.
56. Gasiński L., Papageorgiou N.S., Existence and multiplicity of solutions for second order periodic systems with the p-Laplacian and a nonsmooth potential, Monatshefte fuer Mathematik, 158:2 (2009), 121-150, doi:10.1007/s00605-008-0041-7.
55. Gasiński L., Papageorgiou N.S., Nodal and multiple constant sign solutions for resonant p-Laplacian equations with a nonsmooth potential, Nonlinear Analysis: Theory, Methods & Applications, 71:11 (2009), 5747-5772, doi:10.1016/j.na.2009.04.063.
54. Gasiński L., Papageorgiou N.S., Three nontrivial solutions for periodic problems with the p-Laplacian and a p-superlinear nonlinearity, Communications on Pure and Applied Analysis, 8:4 (2009), 1421-1437, doi:10.3934/cpaa.2009.8.1421.
53. Denkowski Z., Gasiński L., Papageorgiou N.S., Positive solutions for nonlinear periodic problems with the scalar p-Laplacian, Set-Valued Analysis, 16:5-6 (2008), 539-561, doi:10.1007/s11228-007-0059-3.
52. Gasiński L., Existence and multiplicity results for quasilinear hemivariational inequalities at resonance, Mathematische Nachrichten, 281:12 (2008), 1728-1746, doi:10.1002/mana.200510710.
51. Gasiński L., Papageorgiou N.S., Existence and multiplicity of solutions for Neumann p-Laplacian-type equations, Advanced Nonlinear Studies, 8:4 (2008), 843-870.
50. Gasiński L., Evolution hemivariational inequality with hysteresis operator in higher order term, Acta Mathematica Sinica-English Series, 24:1 (2008), 107-120, doi:10.1007/s10114-007-0997-6.
49. Gasiński L., Strongly resonant quasilinear elliptic equations, Nonlinear Analysis: Theory, Methods & Applications, 68:4 (2008), 969-980, doi:10.1016/j.na.2006.11.053.
48. Gasiński L., Existence results for quasilinear hemivariational inequalities at resonance, Discrete and Continuous Dynamical Systems, A Suplement Volume (2007), 409-418, doi:10.3934/proc.2007.2007.409.
47. Gasiński L., Multiplicity theorems for periodic systems with p-Laplacian-like operator, Nonlinear Analysis: Theory, Methods & Applications, 67:9 (2007), 2632-2641, doi:10.1016/j.na.2006.09.028.
46. Gasiński L., Multiplicity theorems for scalar periodic problems at resonance with p-Laplacian-like operator, Journal of Global Optimization, 38:3 (2007), 459-478, doi:10.1007/s10898-006-9096-y.
45. Denkowski Z., Gasiński L., Papageorgiou N.S., Existence of positive and of multiple solutions for nonlinear periodic problems, Nonlinear Analysis: Theory, Methods & Applications, 66:10 (2007), 2289-2314, doi:10.1016/j.na.2006.03.020.
44. Denkowski Z., Gasiński L., Papageorgiou N.S., Existence and multiplicity of solutions for semilinear hemivariational inequalities at resonance, Nonlinear Analysis: Theory, Methods & Applications, 66:6 (2007), 1329-1340, doi:10.1016/j.na.2006.01.019.
43. Gasiński L., Positive solutions for resonant boundary value problems with the scalar p-Laplacian and nonsmooth potential, Discrete and Continuous Dynamical Systems, 17:1 (2007), 143-158, doi:10.3934/dcds.2007.17.143.
42. Filippakis M.E., Gasiński L., Papageorgiou N.S., Multiple positive solutions for eigenvalue problems of hemivariational inequalities, Positivity, 10:3 (2006), 491-515, doi:10.1007/s11117-005-0002-5.
41. Gasiński L., Motreanu D., Papageorgiou N.S., Multiplicity of nontrivial solutions for elliptic equations with nonsmooth potential and resonance at higher eigenvalues, Proceedings of the Indian Academy of Sciences (Mathematical Sciences), 116:2 (2006), 233-255, doi:10.1007/BF02829789.
40. Filippakis M.E., Gasiński L., Papageorgiou N.S., Nonsmooth generalized guiding functions for periodic differential inclusions, NoDEA: Nonlinear Differential Equations and Applications, 13:1 (2006), 43-66, doi:10.1007/s00030-005-0028-1.
39. Filippakis M.E., Gasiński L., Papageorgiou N.S., Semilinear hemivariational inequalities with strong resonance at infinity, Acta Mathematica Scientia, Series B. English Edition, 26:1 (2006), 59-73.
38. Denkowski Z., Gasiński L., Papageorgiou N.S., Nontrivial solutions for resonant hemivariational inequalities, Journal of Global Optimization, 34:3 (2006), 317-337, doi:10.1007/s10898-005-4388-1.
37. Filippakis M.E., Gasiński L., Papageorgiou N.S., Nonlinear periodic problems with nonsmooth potential restricted in one direction, Publicationes Mathematicae Debrecen, 68:1-2 (2006), 37-62.
36. Filippakis M.E., Gasiński L., Papageorgiou N.S., Multiplicity results for nonlinear Neumann problems, Canadian Journal of Mathematics, 58:1 (2006), 64-92, doi:10.4153/CJM-2006-004-6, Abstract.
35. Filippakis M.E., Gasiński L., Papageorgiou N.S., Nontrivial solutions for semilinear hemivariational inequalities resonant at higher eigenvalues, Acta Scientiarum Mathematicarum (Szeged), 71:3-4 (2005), 581-602.
34. Gasiński L., Evolution hemivariational inequalities of wave-type with hysteresis, Nonlinear Analysis: Theory, Methods & Applications, 63:5-7 (2005), e299-e308, doi:10.1016/j.na.2005.01.038.
33. Gasiński L., Papageorgiou N.S., Extremal solutions and strong relaxation for second order multivalued boundary value problems, Czechoslovak Mathematical Journal, 55:4 (2005), 827-844, doi:10.1007/s10587-005-0069-y, Abstract.
32. Filippakis M.E., Gasiński L., Papageorgiou N.S., On the existence of positive solutions for hemivariational inequalities driven by the p-Laplacian, Journal of Global Optimization, 31:1 (2005), 173-189, doi:10.1007/s10898-003-5444-3.
31. Filippakis M.E., Gasiński L., Papageorgiou N.S., A multiplicity result for semilinear resonant elliptic problems with nonsmooth potential, Nonlinear Analysis: Theory, Methods & Applications, 61:1-2 (2005), 61-75, doi:10.1016/j.na.2004.11.012.
30. Gasiński L., Evolution hemivariational inequality with hysteresis and optimal control problem, Lecture Notes in Pure and Applied Mathematics, 240 (2005), 157-168.
29. Gasiński L., Papageorgiou N.S., Nonlinear hemivariational inequalities with eigenvalues near zero, Discrete and Continuous Dynamical Systems, A Suplement Volume, (2005), 317-326, doi:10.3934/proc.2005.2005.317. Proceedings of the 5th AIMS International Conference on Dynamical Systems and Differential Equations, June 15-19, 2004 Pomona,
28. Filippakis M.E., Gasiński L., Papageorgiou N.S., Periodic problems with asymmetric nonlinearities and nonsmooth potentials, Nonlinear Analysis: Theory, Methods & Applications, 58:5-6 (2004), 683-702, doi:10.1016/j.na.2003.12.003.
27. Gasiński L., Papageorgiou N.S., On nonlinear elliptic hemivariational inequalities of second order, Acta Mathematica Scientia, Series B. English Edition, 24:3 (2004), 451-462.
26. Gasiński L., Evolution hemivariational inequalities with hysteresis, Nonlinear Analysis: Theory, Methods & Applications, 57:3 (2004), 323-340, doi:10.1016/j.na.2004.02.016.
25. Filippakis M.E., Gasiński L., Papageorgiou N.S., Existence theorems for periodic differential inclusions in R^N, Acta Mathematicae Applicatae Sinica (English Series), 20:1 (2004), 33-44, doi:10.1007/s10255-004-0160-4.
24. Filippakis M.E., Gasiński L., Papageorgiou N.S., Quasilinear hemivariational inequalities with strong resonance at infinity, Nonlinear Analysis: Theory, Methods & Applications, 56:3 (2004), 331-345, doi:10.1016/j.na.2003.09.011. Abstract, Keywords.
23. Filippakis M.E., Gasiński L., Papageorgiou N.S., Positive solutions for second order multivalued boundary value problems, Nonlinear analysis and applications: to V. Lakshmikantham on his 80th birthday. Vol. 1, 2, 531-547, Kluwer Acad. Publ., Dordrecht, 2003.
22. Gasiński L., Papageorgiou N.S., Nonlinear second order multivalued boundary value problem, Proceedings of the Indian Academy of Sciences (Mathematical Sciences), 113:3 (2003), 293-319, doi:10.1007/BF02829608.
21. Gasiński L., Papageorgiou N.S., Two bounded solutions of opposite sign for nonlinear hemivariational inequalities at resonance, Publicationes Mathematicae Debrecen, 63:1-2 (2003), 29-49.
20. Gasiński L., Optimal control problem of Bolza-type for evolution hemivariational inequality, Discrete and Continuous Dynamical Systems, A Suplement Volume, (2003), 320-326, doi:10.3934/proc.2003.2003.320. Proceedings of The 4th AIMS International Conference on Dynamical Systems and Differential Equations, May 24-27, 2002 Wilmington,
19. Gasiński L., Papageorgiou N.S., On the existence of multiple periodic solutions for equations driven by the p-Laplacian and with a Nonsmooth Potential, Proceedings of the Edinburgh Mathematical Society, 46:1 (2003), 229-249, doi:10.1017/S0013091502000159. Abstract, Keywords.
18. Gasiński L., Papageorgiou N.S., Strongly nonlinear multivalued boundary value problems, Nonlinear Analysis: Theory, Methods & Applications, 52:4 (2003), 1219-1238, doi:10.1016/S0362-546X(02)00162-1.
17. Gasiński L., Papageorgiou N.S., Strongly resonant semilinear and quasilinear hemivariational inequality, Acta Scientiarum Mathematicarum (Szeged), 68:3-4 (2002), 727-750.
16. Gasiński L., Existence of solutions for hyperbolic hemivariational inequalities, Journal of Mathematical Analysis and Applications, 276:2 (2002), 723-746, doi:10.1016/S0022-247X(02)00431-6.
15. Gasiński L., Papageorgiou N.S., A multiplicity result for nonlinear second order periodic equations with nonsmooth potential, Bulletin of the Belgian Mathematical Society, 9:2 (2002), 245-258.
14. Gasiński L., Smołka M., An existence theorem for wave-type hemivariational inequalities, Mathematische Nachrichten, 242 (2002), 79-90, doi:10.1002/1522-2616(200207)242:1<79. MR
13. Gasiński L., Smołka S., Existence of solutions for wave-type hemivariational inequalities with noncoercive viscosity damping, Journal of Mathematical Analysis and Applications, 270:1 (2002), 150-164, doi:10.1016/S0022-247X(02)00057-4. MR
12. Gasiński L., Papageorgiou N.S., Solutions and multiple solutions for quasilinear hemivariational inequalities at Resonance, Proceedings of the Royal Society of Edinburgh Section A, Mathematics, 131A:5 (2001), 1091-1111, doi:10.1017/S0308210500001281. MR
11. Gasiński L., Papageorgiou N.S., Existence of solutions and of multiple solutions of hemivariational inequalities, Advances in Mathematical Sciences and Applications, 11:1 (2001), 437-464. MR
10. Gasiński L., Existence result for hyperbolic hemivariational inequalities, Nonlinear Analysis: Theory, Methods & Applications, 47:1 (2001), 681-686, doi:10.1016/S0362-546X(01)00211-5.
9. Gasiński L., Papageorgiou N.S., Semilinear hemivariational inequalities at resonance, Rendiconti del Circolo Matematico di Palermo, Serie II, 50:2 (2001), 217-238. MR
8. Gasiński L., Papageorgiou N.S., Multiple solutions for semilinear hemivariational inequalities at resonance, Publicationes Mathematicae Debrecen, 59:1-2 (2001), 121-146. MR
7. Gasiński L., Mapping method in optimal shape design problems governed by hemivariational inequalities, Lecture Notes in Pure and Applied Mathematics, 216 (2001), 277-288. MR
6. Gasiński L., Papageorgiou N.S., An existence theorem for nonlinear hemivariational inequalities at resonance, Bulletin of the Australian Mathematical Society, 63:1 (2001), 1-14, doi:10.1017/S0004972700019067. MR
5. Gasiński L., Papageorgiou N.S., Multiple solutions for nonlinear hemivariational inequalities near resonance, Funkcialaj Ekvacioj, 43:2 (2000), 271-284. MR
4. Gasiński L., An optimal shape design problem for a hyperbolic hemivariational inequality, Discussiones Mathematicae. Differential Inclusions, Control and Optimization, 20:1 (2000), 41-50. MR
3. Gasiński L., Papageorgiou N.S., Nonlinear hemivariational inequalities at resonance, Bulletin of the Australian Mathematical Society, 60:3 (1999), 353-364, doi:10.1017/S0004972700036546. MR
2. Gasiński L., Optimal shape design problems for a class of systems described by a parabolic hemivariational inequality, Journal of Global Optimization, 12:3 (1998), 299-317 doi:10.1023/A:1008246220601. MR
1. Gasiński L., On capacity and some its applications, Universitatis Iagellonicae Acta Mathematica, XXXV (1997), 225-242. MR
 
Conference Publications
 
7. Gasiński L., Papageorgiou N.S., Existence of Nontrivial Smooth Solutions for Nonlinear Resonant Neumann Problems Driven by the p-Laplacian, Lecture Notes in Decision Science, Vol. 12, Global Optimization: Theory, Methods \& Applications I, Changsha, China (2009), 255-262.
6. Gasiński L., Semilinear Hemivariational Inequalities with Hysteresis, Proceedings of the International Conference on Nonsmooth/Nonconvex Mechanics with Applications in Engineering in Memoriam of Professor P.D. Panagiotopoulos, Thessaloniki, Greece (2006), 37-44.
5. Gasiński L., An Optimal Control Problem Described by Hyperbolic Hemivariational Inequalities, Proceedings of the International Conference on Nonsmooth/Nonconvex Mechanics with Applications in Engineering in Memoriam of Professor P.D. Panagiotopoulos, Thessaloniki, Greece (2002), 331-338.
4. Gasiński L., Smolka M., An Optimal Control Problem Described by Wave-Type Hyperbolic Hemivariational Inequalities, Proceedings of the IASTED International Conference: Control and Applications, Cancun, Mexico (2002), 53-58.
3. Gasiński L., Hemivariational Inequalities with Hysteresis Operator (in Polish), Proceedings of the III National Conference on Methods and Computer Systems in Scientific Research and Engineering Design, Kraków, Poland (2001), 3-8. Abstract
2. Denkowski Z., Gasiński L., Migórski S., Smołka S., Determination of Death Coefficient and Stability in Population-Type Equation, Proceedings of the VI National Conference on Applications of Mathematics in Biology and Medicine, Zawoja, Poland (2000), 34-39. Abstract
1. Denkowski Z., Gasiński L., Migórski S., Determination of a Death Rate in Age-Structured Population Dynamics, Proceedings of the IV National Conference on Applications of Mathematics in Biology and Medicine , Zwierzyniec , Poland (1998), 29-34. Abstract